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ABSTRACT: 

Proteins are the workhorses of the cell that perform biological functions by interacting with other proteins. Many statistical 

methods for protein-protein interaction (PPI) have been studied without considering time-dependent changes in networks 

and the functionalities. These time-dependent functional and topological changes in the network are very crucial for 

identifying malfunctioning regulatory pathways at different disease stages. I introduced a novel method that models PPI 

networks as being dynamic in nature and evolving time-varying multivariate distribution with Conditional Random Fields 

(CRF). This research is directed towards implementing this new combinatorial algorithm on massively parallel architectures 

such as Graphics Processing Units (GPUs) for efficient computations for large scale bioinformatics datasets. I compared 

Conditional Random Fields (CRF) and the proposed novel method using CRF combined with the Block Coordinate Descent 

algorithm for human protein-protein interaction data set. Both are implemented on GPU-Accelerated Computing Architecture 

and the proposed novel method showed the advantages in predicting protein-protein interaction sites. I also show that the 

proposed approach is more efficient in 6.13% than standalone CRF++ in predicting protein-protein interaction sites. 
Keywords: Proteins, time-varying, parallel, architectures, Conditional Random Fields (CRF), Graphics Processing Units, Block 
Coordinate Descent algorithm 
 

INTRODUCTION: 
Proteins are the molecular machinery of life. The living 
cell is made of proteins. All data in biological system are 
processed, integrated, and executed through complex 
interactions networks. Protein-Protein Interaction 
Network (PPIN) generates various kind of 
relationships between proteins, such as physical 
interactions, regulatory and metabolic pathways, 
similarity in sequence motifs, gene expression profiles, 
cellular localization etc.,[1]. 
 
In PPIN, proteins correspond to nodes and 
relationships between proteins correspond to edges. 
With highly non-linear relationships and rapid 
dynamics, these networks are a complex system. Also 
PPINs generate topological structures, complex 
functions and dependencies, including hierarchical 
structures, multiple types of edges, but these structures 
and dependencies are weakly understood, poorly 
characterized, and more challenging, if dynamic nature 
is not considered [1]. 
 
However, the complexity in biological networks is 
often approached in a static and time-invariant manner 
without considering rapidly changing regulatory 
mechanisms as well as acquired evolutionary 
relationships between proteins. Such approaches 
describe that network relationships happen only at an 
instant during the evolution of system. Such time-
dependencies in the PPIN can entirely redefine 
network topology with completely different functional 
relationships between proteins at various times and 
states of the system. These time-dependent functional 

and topological changes in the network are crucial for 
identifying malfunctioning regulatory pathways at 
different disease stages [2, 3]. Real-time analysis of 
PPIN is important for detecting anomalies, predicting 
border. Real-time analysis of PPIN is important for 
detecting anomalies, predicting vulnerability, and 
assessing the potential impact of interventions in 
biological systems.  
 
With increasing vast amounts of data in PPI networks, 
performance and scalability issues are becoming a 
critical limiting factor [4, 5]. Because of that, it is 
important to find a solution for its high performance 
and efficiency. 
 
The main objective of this study is to build a fast 
parallel time-varying graphical model for a large scale 
protein-protein interaction networks to address above 
issues. By considering functions of biological building 
blocks such as proteins, genes, small molecules, protein 
complexes etc, the next attempt is to create a general 
model that can map with the topologies of these 
dynamically change biological networks. My last 
objective is to build a solution for performance and 
efficiency for large scale data set. 
 
RELATED WORK AND OVERVIEW 
A PPI network can be described as a complex system of 
proteins linked by interactions. The computational 
analysis of PPI networks begins with the 
representation of the PPI network structure. The 
simplest representation takes the form of a 
mathematical graph consisting of nodes and edges. 
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Proteins are represented as nodes in such a graph; two 
proteins that interact physically are represented as 
adjacent nodes connected by an edge. Based on this 
graphic representation, various computational 
approaches, such as data mining, machine learning, and 
statistical approaches, can be designed to reveal the 
organization of PPI networks at different levels. An 
examination of the graphic form of the network can 
yield a variety of insights [6]. 
 
In 2006, Chung investigated that this relation and used 
the clustering as a post-processing strategy to remove 
the isolated interface residues predicted by SVMs, and 
included the noninterface residues surrounded by 
several predicted interface residue [7]. Before this, 
several researches have successfully applies many 
machine learning method such as SVM, Neural 
Networks.   
 
In 2006, Conditional Random Fields has been 
successfully applied by Sutton to solve sequence 
labeling problems, and are also proved their 
effectiveness in solving problems in protein secondary 
structure prediction and protein fold recognition [8].  
 
In 2011, Morihiro Hayashida proposed a novel method 
which combines conditional random fields with the 
domain based model of protein-protein interactions. 
Furthermore, they have improved the method by 
introducing mutual information. In order to give better 
performance, they have introduced mutual 
information to the probabilistic model [9]. 
 
In contrast, in recent years, high throughput view of the 
PPI consider  proteins as logical entities and they 
represent their interactions as a network but statically 
without considering time-dependent changes in the 
network and the functionality. 
 
In 2008, Shuheng Zhou has shown how to estimate the 
sequence of graphs for non-identically distributed 
data, where the distribution evolves over time. In this 
paper, they have developed a nonparametric method 
for estimating time varying graphical structure for 
multivariate Gaussian distributions [10]. 
 
In 2011, Jun Sung Joon has presented a fast parallel 
implementation using commodity graphics hardware 
based a well-known sequential complex finding 
algorithm to address the computational challenge. This 
parallel algorithm is implemented on the NVIDIA 
parallel computing architecture of CUDA. It is 
evaluated for a various kinds of large-scale PPI 
networks [11]. In the same year, Alhadi Bustamam has 
introduced a very fast Markov clustering algorithm 
(MCL) using CUDA to perform parallel sparse matrix-
matrix computations and parallel sparse Markov 

matrix normalizations, which are at the heart of MCL. 
They have utilized sparse format to allow the effective 
and fine-grain massively parallel processing to cope 
with the sparse nature of interaction networks datasets 
in bioinformatics applications [12].  
 
In 2009, Ming-Hui Li and Lei Lin have mentioned and 

proved, CRF is the best way to model biological 

networks like PPINs. The advantage of CRFs is that it 

can integrate both rich state features and transition 

features between label states. Furthermore, CRFs have 

advantages over traditional graphical models such as 

hidden Markov models (HMMs) and maximum entropy 

Markov models (MEMMs). It is one of the outstanding 

methods used for labeling sequence data [13]. 

These have shown parallel computing environment in 
the GPU card, is becoming a very powerful, efficient and 
low cost option to achieve substantial performance 
gains over CPU approaches. PPI network can be 
described as a complex system of proteins linked by 
interactions. The computational analysis of PPI 
networks begins with the representation of the PPI 
network structure. The simplest representation takes 
the form of a mathematical graph consisting of nodes 
and edges [14, 15].  
 
PPI have been studied in different perspectives. In the 
classical view, PPI prediction has been studied as a 
classification task and separately studied each residue, 
so one interface residue is identified at a time. The 
disadvantage of these methods is the relation between 
two labels of neighboring residues is not considered. 
However, sequentially or spatially neighboring 
residues should have similar characters in building 
interfaces [16,17].  
 
Markov Cluster Algorithm, a fast and scalable 
unsupervised cluster algorithm for networks (also 
known as graphs) based on simulation of flow in 
graphs. Also Markov Clustering Algorithm has been 
used to with CUDA for data networks. As this algorithm 
is based on the graph theory, parallel computing 
architecture. 
 
RESEARCH METHODOLOGY AND ALGORITHMS 
Graphical models are a marriage between probability 
theory and graph theory. The graphical model is the 
fundamental solution to model a complex system by 
combining simpler parts. Probability theory provides 
the glue whereby the parts are combined, ensuring that 
the system as a whole is consistent, and providing ways 
to interface models to data. The graph theoretic side of 
graphical models provides both an intuitively 
appealing interface by which humans can model 
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highly-interacting sets of variables as well as a data 
structure that lends itself naturally to the design of 
efficient general-purpose algorithms [13]. 
 
Network models are the most popular way to represent 
complex systems by considering the relational patterns 
among observed variables. In various research areas 
such as biology, astronomy and social sciences, 
successful network models are based on the Gaussian 
graphical models (GGMs). The precision matrix 
represents conditional dependencies between random 
variables and a network representation is obtained by 
linking conditionally dependent variables in the 
framework of the GGMs. This graphical representation 
provide additional insight into the system under 
observation by showing how different parts of the 
system interact. [18] 
 
CRF is the best graphic representation to model 
biological networks like PPINs on the above review. 
The advantage of CRFs is that it can integrate both rich 
state features and transition features between label 
states. It is one of the outstanding methods used for 
labeling sequence data. In my study, each residue needs 
to be labeled as an interface residue or noninterface 
residue in given a protein sequence with structural 
information. Furthermore, considering advantages of 
CRFs over traditional graphical models such as hidden 
Markov models (HMMs) and maximum entropy 
Markov models (MEMMs), the CRF was used rather 
than other graphical models. [17,23].  
 
Markov Cluster Algorithm, a fast and scalable 
unsupervised cluster algorithm for networks (also 
known as graphs) based on simulation of flow in 
graphs[19]. Also Markov Clustering Algorithm has 
been used to with CUDA for data networks. As this 
algorithm is based on the graph theory, parallel 
computing architecture can be applied to model my 
approach. 
 
Undirected Graphical Model 
A graph consists of a set of vertices (nodes), along with 
set of joining some pairs of the vertices. In graphical 
models, each vertex represents a random variable, and 
the graph gives a visual way of understanding the joint 
distribution of the entire set of random variables [20].  
 
Undirected graphical models, also known as Markov 
random fields or Markov networks. In an undirected 
graph, the edges have no directional arrows. In these 
graphs, the absence of an edge between two vertices 
has a special meaning: the  
 

 
 
FIGURE 1 Example of a sparse undirected graph, 
estimated from a flow cytometry dataset, with p = 11 
proteins measured on N = 7466 cells. The network 
structure was estimated using the graphical lasso 
procedure  
 
corresponding random variables are conditionally 
independent, given the other variables [20].    
  
In these graphs, the absence of an edge between two 
vertices has a special meaning: the corresponding 
random variables are conditionally independent, given 
the other variables [20].  
 
Figure 1 shows an example of a graphical model for a 
flow-cytometry dataset with p = 11 proteins measured 
on N = 7466 cells. Each vertex in the graph corresponds 
to the real-valued expression level of a protein. The 
network structure was estimated assuming a 
multivariate Gaussian distribution, using the graphical 
lasso procedure [21]. 
 
Markov Graphs and Their Properties 
Figure 2 shows four examples of undirected graphs. A 
graph G consists of a pair (V,E), where V is a set of 
vertices and E the set of edges (defined by pairs of 
vertices). Two vertices X and Y are called adjacent if 
there is an edge joining them; this is denoted by X ∼ Y. 
 
A path X1, X2, . . . ,Xn is a set of vertices that are joined, 
that is X i−1 ∼ Xi for i = 2, . . . , n. A complete graph is a 
graph with every pair of vertices joined by an edge. A 
subgraph U ∈ V is a subset of vertices together with 
their edges. 
 
In a Markov graph G, the absence of an edge implies 
that the corresponding random variables are 
conditionally independent given the variables at the 
other vertices. This is expressed with the following 
notation: 
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FIGURE .2. Examples of undirected graphical models or 
Markov networks. Each node or vertex represents a 
random variable, and the lack of an edge between two 
nodes indicates conditional independence. For example, 
in graph (a), X and 
Z are conditionally independent, given Y . In graph (b), Z 
is independent of each of X, Y, and W. 

 
For example, (X, Y,Z) in Figure 2(a) form a path but not 
a complete graph [20].  
 
No edge joining X and Y ⇐⇒ X ⊥ Y |rest 
 
Where “rest” refers to all of the other vertices in the 
graph. For example in Figure 2(a),  X ⊥ Z|Y. These are 
known as the Pairwise Markov Independencies of G [20]. 
 
In a Markov graph G with sub-graphs A, B and C, if C 
separates A and B then A ⊥ B|C. 
 
A probability density function f over a Markov graph G 
can be can represented as Eqn. 1                            

    
Where C is the set of maximal cliques, and the positive 
functions ψC(·) are called clique potentials. 
These are not in general density functions, but rather 
are affinities that capture the dependence in XC by 
scoring certain instances XC higher than others. The 
quantity is the normalizing constant, also known as the 
partition function. Alternatively, the representation 
(Eqn. 1) implies a graph with independence properties 
defined by the cliques in the product. This result holds 
for Markov networks G with positive distributions, and 
is known as the Hammersley Clifford Theorem [22, 25]. 
 

 
A graphical model does not always uniquely specify the 
higher-order dependence structure of a joint 
probability distribution. Consider the complete three-
node graph in Figure 3. It could represent the  

 
 
FIGURE 3. A complete graph does not uniquely specify 
the higher-order dependence structure in the joint 
distribution of the variable. 
 
dependence structure of either of the following 
distributions as equation 3 and 4.  
 

 
 
The Eqn.2 specifies only second order dependence 
(and can be represented with fewer parameters). 
Graphical models for discrete data are a special case of 
log linear models for multiway contingency tables [24] 

in that language f(2) is referred to as the “no second-
order interaction” model. 
 
Conditional random field model for PPI 
Conditional random fields used for labeling sequence 
CRF has a single exponential model for the joint 
probability of the entire sequence of labels given the 
observation sequence. Conditional random fields 
(CRFs) were proposed for labeling sequence data [16]. 
 
Protein surface residues were extracted and the 
surface residue segments were treated as sequence 
data. Residues on surface segments were labeled as 
interface or noninterface residues using Conditional 
Random Field [17]. 
 
The graphical model representation for chain-form 
CRFs is shown in Fig. 5, where we have one state 
assignment for each residue in the sequence. Especially 
the conditional probability P(Y/X) is defined as 
Equation 5. 

 
 
Where fk can be arbitrary features, including 
overlapping or long-range interaction features. Given a 
sequence of observations X = (x1, x2, …, xn), we want to 
get the most probable label sequence Y = (y1, y2, …, yn), 
i.e. The parameters λ = (λ1…….. λk) are computed by 
minimizing the regularized log-loss of the conditional 
probability of the training data [26]. 
 

(Eqn. 1) 

(Eqn. 2) 

(Eqn.3) 

(Eqn. 4) 

(Eqn. 5) 
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FIGURE 5: Graphical model representation of and 
chain-structured CRF 
 

Time-arraying probabilistic graphical model with 
PPI Networks 
The time-varying multivariate Gaussian distribution 
and the undirected graph associated with it provide a 
useful statistical framework for modeling complex 
dynamic networks.  
 
A stationary undirected probabilistic graphical model 
(PGM), also known as a Markov Random Field, is a tuple 
M= (V; E; F). Here V is a set of nodes corresponding to 
a collection of random variables, E is a set of undirected 
edges encoding them conditional independencies 
between random variables, and F is a set of functions, 
also known as factors, on the nodes and edges. A 
Markov Random Field factors the joint distribution as 
the products of the factors. When each random variable 
is distributed according a Gaussian distribution, it is 
called Gaussian Graphical Model (GGM) [27,28]. 
 
We can extend the stationary model to the time varying 
case by making the set of edges and the parameters of 
the functions a function of t. That is, our model has the 
form: M(t) = (V;E(t); F(t)) . First parameter estimation 
of a regularized Gaussian Graphical Model studied and 
extended to the   algorithm to learn the time varying 
GGM [28].  
 
Multivariate Gaussian Graphical Models 
Gaussian Graphical Models are multivariate probability 
distributions encoding a network of dependencies 
among variables. Let θ = [θ1; θ2; ::; θn] be a set of n 
variables, and let f(θ=D) be the value of the probability 
density function at a particular value D[28,34]. 
 
A multivariate GGM factors this as in Equation 6.  
 

 

 
Where Z is the normalization coefficient. The 
parameters of this distribution are µ and ∑ [27,28]. 
 

Regularized Time Varying Gaussian Graphical 
Model 
 
Convex Optimization for Parameter Estimation of 
Regularized Time Varying GGM 
 
Let D 1..T(1)…(m)  be the set of training data, where each 

Dt
(i) is a sample represented by n variables. The time 

varying GGM parameter estimation algorithm extends 
the stationary GGM parameter learning as follows in 
equation 7 [28]. 
 

 
Here, S(t) is the weighted covariance matrix, and is 
calculated as follows in equation 8. 
 

 
 
The weights wst are defined by a symmetric 
nonnegative kernel function. As a kernel with a larger 
span will cause the time varying model to be less 
sensitive to abrupt changes in the network and capture 
the slower and more robust behaviors. On the other 
hand, as the kernel function span decreases, the time 
varying will be able to capture more short term 
patterns of interaction [28]. 
 
I used Block Coordinate Descent Algorithm to solve the 
stationary and time varying problems. This method has 
been proposed by Banerjee [41], and proceeds by 
forming the dual for the optimization case, and 
applying block coordinate descent to the dual form 
[28]. 
 
Recall that the basic form of both the stationary and 
time varying case is as follows in equation 9. 
 

 
 
 
We first rewrite the L1-norm as: ∞ 

 
 
In equation 10, where ||U||∞ denotes the maximum 
absolute value element of the matrix U. Given this 
change of formulation, we can rewrite the primary 
form of the problem as in equation 11. 

 
 

Eqn. 6 

Eqn. 7 

       (Eqn. 8) 

       (Eqn. 9) 

       (Eqn. 10) 

(Eqn.11) 
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Thus, the optimal ∑-1 is the one that maximizes the 
worst case log likelihood, over all additive 
perturbations of the covariance matrix, S [28]. 

 
Next, to obtain the dual form, we exchange the min and 
max, and the inner max objective function can now be 
solved analytically taking the gradient and setting it to 
zero. This results in the new form of the objective 
function: 
 

 
 
 

Where n is the number of features in each sample.  
 

Once we solve this problem, the optimal ∑-1 can be 
computed as ∑-1 = (S + U*)-1. Performing one last change 
of variables W = S +U, and forming the dual of the 
problem will bring us to the final form of our objective. 
 

 
 
 

The Block Coordinate Descent Algorithm  
For any matrix A, let A\k\j denote the matrix produced 
by removing column k and row j of the matrix. Let Aj 
also denote the column j, with diagonal element Ajj 
removed. The Block Coordinate Descent algorithm 
proceeds by optimizing one row and one column of the 
variable matrix W at a time. The algorithm iteratively 
optimizes all columns until a convergence criteria is 
met. The algorithm as follows [28,29].  
 
The W(j)s produced in each step are strictly positive 
definite. This property is important because the dual 
problem estimates the covariance matrix ∑, rather 
than the inverse covariance matrix, ∑-1, 
 

 
 
The network conditional dependencies which we are 
interested in are encoded in the inverse covariance 
matrix, so the strictly positivity of W(j) will guarantee 
that the optimum ∑ will be reversible, and that we can 
compute the final answer ∑-1 from the W(j) [28] 
 
Graphics processing units (GPUs) for large-scale 
protein interaction networks 

A protein-protein interaction network is represented 
as proteins are nodes and interactions between 
proteins are edges. Protein complexes and functional 
modules can be identified as highly interconnected 
subgraphs and computational methods are now 
inevitable to detect them from protein interaction data. 
As the interaction dataset increases, the scale of 
interconnected protein networks increases 
exponentially so that the increasing complexity of 
network gives computational challenges to analyze the 
networks[11,30]. 
 
Markov clustering (MCL) is becoming a key algorithm 
within bioinformatics for determining clusters in 
networks [17]. Here I used "Molecular Complex 
Detection" (MCODE) algorithm also makes the 
visualization of large networks manageable by 
extracting the dense regions around a protein of 
interest. The MCODE algorithm operates in three 
stages, vertex weighting, complex prediction and 
optionally post processing to filter or add proteins in 
the resulting complexes by certain connectivity criteria 
[30]. 
This MCODE algorithm has the advantage over other 
graph clustering methods of having a directed mode 
that allows fine-tuning of clusters of interest without 
considering the rest of the network and allows 
examination of cluster interconnectivity, which is 
relevant for protein networks [30].  
 
Parallel MCODE Algorithm for protein Complex 
Prediction 

d: vertex weight percentage 
Wv: vertex weight of v 

Sv: vertex weight of seed of v 

Nv : seed vertex of v 
Sv ← v, for all v 
 
while there is any changes of Sv 
for all v neighbors of n do in parallel 
if Nv <> Nn then 
if Wv < Sn AND Wv> (1-d) Sn then 
Sv ← Sn 
Nv ← Nn 
else if Wv = Sn AND Cv > Cn then 
Nv ← Nn 
end if 
end if 
synchronize all threads 

 end while 
 
DATA AND IMPLEMENTATION 
The Human protein-protein interaction data file 
“Hsapi20170205.txt” from DIP database was used [32, 
33] for analyzing.  All DIP database records available 
through this Web Site are freely available under the 

(Eqn. 12) 

(Eqn.13) 
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terms set by the Creative Commons Attribution-
NoDerivs License [33]. Initially I started with 9025 
number of protein interactions entries of Homo 

sapiens which are given in Hsapi20170205.txt file of 
DIP database. As some  

 
 

iteration CRF with GPU CRF with  Block 
Coordinate Descent 
algorithm with GPU 

Training Recognition 
of Testing 

Testing Recognition 
of Testing 

1 98.31% 74.51% 98.45% 84.92% 
2 98.81% 74.67% 97.57% 82.72% 
3 93.45% 84.02% 98.59% 83.93% 

Average 96.86% 77.73% 98.23% 83.86% 
 

Table 1: Results for training and test datasets using the CRF model and our novel model for human computer data 

for mutual information protein interactions

entries among these interactions were not matched 

with their primary sequences, the multi-stage 

refinement was applied to remove the interactions 

with incomplete information. After processing them 

step by steps it was reduced uptown 168 in our Homo 

sapiens training dataset. [33]. 

CRF++ is a simple, customizable, and open source   

implementation of Conditional Random Fields (CRFs) 

for segmenting/labeling sequential data. CRF++ is 

designed for generic purpose and will be applied to a 

variety of NLP tasks, such as Named Entity Recognition, 

Information Extraction and Text Chunking [36].  

CRF++, less memory usage both in training and testing, 

has been written in C++ with STL.  

By combining the two approaches CRF++ and Block 
Coordinate Descent algorithm using C++, I obtained an 
implementation that is very competitive and often 
outperforms other state-of-the-art approaches for this 
problem. I also show that the proposed approach is 
more efficient in practice than the one implemented in 
standalone CRF++ for human protein data set.  
 
Both were implemented on GPU-Accelerated 
Computing Architecture.  AllegroMCODE plugin, a well-
known molecular complex detection tool was 
integrated in the open-source network visualization 
and analysis platform of Cystoscape platform [30]. This 
parallel MCODE algorithm is implemented on the 
NVIDIA parallel computing architecture of CUDA [11]. 
 
RESULT 
In order to evaluate our method, I compared two 
models, the CRF and proposed method CRF with the 

Block Coordinate Descent algorithm. Both models were 
implemented GPU-Accelerated Computing 
Architecture. Table 1 shows the results for training and 
test datasets using the CRF model and our novel model 
for human computer data for mutual information 
protein interactions. 
 
CONCLUSION 
Conditional Random Fields (CRF) and the proposed 
novel method which combines CRF with the Block 
Coordinate Descent algorithm were compered for 
Human Protein interaction Data with mutual 
information. Both are implemented on GPU-
Accelerated Computing Architecture and the proposed 
novel method show more efficiency in 6.13% than 
standalone CRF  in predicting protein-protein 
interaction sites .  
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